SUM OF MULTIPLE q-ZETA VALUES
نویسنده
چکیده
The generating function of the sums of multiple q-zeta values with fixed weights, depths and 1-heights, 2-heights, . . . , r-heights is represented in terms of specializations of basic hypergeometric functions.
منابع مشابه
ON THE SUM FORMULA FOR MULTIPLE q-ZETA VALUES
Abstract. Multiple q-zeta values are a 1-parameter generalization (in fact, a q-analog) of the multiple harmonic sums commonly referred to as multiple zeta values. These latter are obtained from the multiple q-zeta values in the limit as q → 1. Here, we discuss the sum formula for multiple q-zeta values, and provide a self-contained proof. As a consequence, we also derive a q-analog of Euler’s ...
متن کامل6 F eb 2 00 4 MULTIPLE q - ZETA VALUES
We introduce a q-analog of the multiple harmonic series commonly referred to as multiple zeta values. The multiple q-zeta values satisfy a q-stuffle multiplication rule analogous to the stuffle multiplication rule arising from the series representation of ordinary multiple zeta values. Additionally, multiple q-zeta values can be viewed as special values of the multiple q-polylogarithm, which ad...
متن کاملMultiple q-zeta values
We introduce a q-analog of the multiple harmonic series commonly referred to as multiple zeta values. The multiple q-zeta values satisfy a q-stuffle multiplication rule analogous to the stuffle multiplication rule arising from the series representation of ordinary multiple zeta values. Additionally, multiple q-zeta values can be viewed as special values of the multiple q-polylogarithm, which ad...
متن کاملON THE SUM FORMULA FOR THE q-ANALOGUE OF NON-STRICT MULTIPLE ZETA VALUES
In this article, the q-analogues of the linear relations of non-strict multiple zeta values called “the sum formula” and “the cyclic sum formula” are established.
متن کاملar X iv : m at h / 00 10 14 0 v 1 [ m at h . Q A ] 1 3 O ct 2 00 0 RELATIONS OF MULTIPLE ZETA VALUES AND THEIR ALGEBRAIC EXPRESSION
We establish a new class of relations among the multiple zeta values ζ(k1, . . . , kl) = ∑ n1>···>nl≥1 1 n k1 1 · · ·n kl k , which we call the cyclic sum identities. These identities have an elementary proof, and imply the “sum theorem” for multiple zeta values. They also have a succinct statement in terms of “cyclic derivations” as introduced by Rota, Sagan and Stein. In addition, we discuss ...
متن کاملar X iv : m at h / 04 02 15 2 v 2 [ m at h . Q A ] 1 4 Ja n 20 05 On relations for the q - multiple zeta values
We prove some relations for the q-multiple zeta values (qMZV). They are q-analogues of the cyclic sum formula, the Ohno relation and the Ohno-Zagier relation for the multiple zeta values (MZV). We discuss the problem to determine the dimension of the space spanned by qMZV's over Q, and present an application to MZV.
متن کامل